728x90
반응형
필터의 갯수를 줄이고 cifar10 데이터 셋 학습하기(cifar10으로 데이터 셋 바꾸기)
import tensorflow as tf
mnist=tf.keras.datasets.cifar10
(x_train, y_train),(x_test, y_test)=mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.Sequential([
tf.keras.layers.InputLayer(input_shape=(28,28,1)),
tf.keras.layers.Conv2D(32,(3,3),activation='relu', padding='same'),
tf.keras.layers.MaxPool2D((2,2)),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(10,activation='softmax')
])
model.summary()
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
cifar100 데이터 셋 학습하기(cifar100으로 데이터 셋 바꾸기)
import tensorflow as tf
mnist=tf.keras.datasets.cifar100
(x_train, y_train),(x_test, y_test)=mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.Sequential([
tf.keras.layers.InputLayer(input_shape=(32,32,3)),
tf.keras.layers.Conv2D(32,(3,3),activation='relu', padding='same'),
tf.keras.layers.Conv2D(64,(3,3),activation='relu', padding='same'),
tf.keras.layers.MaxPool2D((2,2)),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128,activation='relu'),
tf.keras.layers.Dense(100,activation='softmax')
])
model.summary()
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
예제 1
import tensorflow as tf
mnist=tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test)=mnist.load_data()
x_test = x_test.reshape(10000,28,28,1)
model = tf.keras.Sequential([
tf.keras.layers.InputLayer(input_shape=(28,28,1)),
tf.keras.layers.Conv2D(64,(3,3),activation='relu', padding='same'),
tf.keras.layers.Conv2D(128,(3,3),activation='relu'),
])
y_pred=model.predict(x_test[:1])
print(y_pred.shape)
예제 2
import tensorflow as tf
mnist=tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test)=mnist.load_data()
x_test = x_test.reshape(10000,28,28,1)
model = tf.keras.Sequential([
tf.keras.layers.InputLayer(input_shape=(28,28,1)),
tf.keras.layers.Dense(128,activation='relu')
])
y_pred=model.predict(x_test[:1])
print(y_pred.shape)
예제3
import tensorflow as tf
mnist=tf.keras.datasets.cifar10
(x_train, y_train),(x_test, y_test)=mnist.load_data()
x_test = x_test.reshape(10000,32,32,3)
model = tf.keras.Sequential([
tf.keras.layers.InputLayer(input_shape=(32,32,3)),
tf.keras.layers.Conv2D(64,(3,3),activation='relu',padding='same'),
tf.keras.layers.Conv2D(128,(3,3),activation='relu'),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128,activation='relu'),
tf.keras.layers.Dense(10,activation='softmax')
])
y_pred=model.predict(x_test[:1])
print(y_pred.shape)
728x90
반응형
'즐거운프로그래밍' 카테고리의 다른 글
[딥러닝] 딥러닝 모델 학습 후 저장하고 필터 이미지 추출하기 (1) | 2023.11.02 |
---|---|
[딥러닝] CNN 활용 예제(엔비디아 자료 보고 신경망 구성하기) (1) | 2023.11.01 |
[딥러닝] CNN 활용 맛보기 1 (1) | 2023.11.01 |
[딥러닝] 6x6x2, 6x6x3 입력 이미지의 합성곱과 필터 늘리기 (0) | 2023.11.01 |
[딥러닝] 3x3x2 입력 이미지의 합성곱 (0) | 2023.11.01 |