728x90
반응형

인공신경망학습 31

[딥러닝] 6x6x2, 6x6x3 입력 이미지의 합성곱과 필터 늘리기

6x6x2 입력 import numpy as np np.random.seed(1) image=np.random.randint(5, size=(4,4,2)) print('image_0=\n', image[:,:,0]) print('image_1=\n', image[:,:,1]) filter=np.random.randint(5, size=(3,3,2)) print('filter_0=\n', filter[:,:,0]) print('filter_1=\n', filter[:,:,1]) image_pad=np.pad(image,((1,1),(1,1),(0,0))) print('image_pad_0=\n', image_pad[:,:,0]) print('image_pad_1=\n', image_pad[:,:,1]) c..

[딥러닝] 필터 역할 살펴보기 - 연습문제

1. 1~9 사이의 정수값으로 구성된 3x3 랜덤 필터를 만들어 적용해보시오 import numpy as np import cv2 import matplotlib.pyplot as plt image_color=cv2.imread('../images/cat.jpg') print('image_color.shape =',image_color.shape) image=cv2.cvtColor(image_color,cv2.COLOR_BGR2GRAY) print('image.shape =',image.shape) np.random.seed(1) filter=np.random.randint(1,10, size=(3,3,3))/9 image_pad=np.pad(image,((1,1),(1,1))) print('image_..

[딥러닝] 필터 역할 살펴보기(다양한 이미지 출력)

선명한 이미지 추출하기 import numpy as np import cv2 import matplotlib.pyplot as plt image_color=cv2.imread('../images/cat.jpg') print('image_color.shape =',image_color.shape) image=cv2.cvtColor(image_color,cv2.COLOR_BGR2GRAY) print('image.shape =',image.shape) filter=np.array([ [-1,-1,-1], [-1,9,-1], [-1,-1,-1] ]) image_pad=np.pad(image,((5,5),(5,5))) print('image_pad.shape =', image_pad.shape) convoluti..

[딥러닝] 필터 역할 살펴보기(컬러이미지로 적용하기)

import numpy as np import cv2 import matplotlib.pyplot as plt image_bgr=cv2.imread('../images/cat.jpg') image=cv2.cvtColor(image_bgr,cv2.COLOR_BGR2RGB) print('image.shape =',image.shape) filter=np.array([[ [1,1,1], [1,1,1], [1,1,1] ],[ [1,1,1], [1,1,1], [1,1,1] ],[ [1,1,1], [1,1,1], [1,1,1] ]])/9 image_pad=np.pad(image,((1,1),(1,1),(0,0))) print('image_pad.shape =', image_pad.shape) convolution=..

[딥러닝] 필터 역할 살펴보기(부드러운 이미지 추출하기)

1. import numpy as np import cv2 import matplotlib.pyplot as plt image_color=cv2.imread('../images/cat.jpg') print('image_color.shape =',image_color.shape) image=cv2.cvtColor(image_color,cv2.COLOR_BGR2GRAY) print('image.shape =',image.shape) filter=np.array([ [1,1,1], [1,1,1], [1,1,1] ])/9 image_pad=np.pad(image,((1,1),(1,1))) print('image_pad.shape =', image_pad.shape) convolution=np.zeros_like..

[딥러닝] 딥러닝 활용하기(임의 흑백, 컬러 이미지 데이터 셋 학습)

임의 흑백 이미지 데이터 셋 생성하기 import tensorflow as tf import numpy as np X=np.random.randint(0,256,(60000,28,28)) YT=np.random.randint(0,10,(60000,)) x=np.random.randint(0,256,(10000,28,28)) yt=np.random.randint(0,10,(10000,)) print(X.shape, YT.shape, x.shape, yt.shape) import matplotlib.pyplot as plt plt.imshow(X[0]) plt.show() print(YT[0]) 임의 흑백 이미지 데이터 셋 학습하기 import tensorflow as tf import numpy as np..

[딥러닝] 딥러닝 활용하기(cifar10 데이터 셋 학습하기)

CIFAR-10 데이터 셋은 6만장, 10 종류의 32x32 컬러 이미지로 구성되며,각각의 종류는 6천장의 이미지로 되어 있습니다. 6만장의 이미지는 5만장의 훈련용 이미지와 1만장의 시험용 이미지로 구성됩니다. import tensorflow as tf mnist=tf.keras.datasets.cifar10 (X,YT),(x,yt)=mnist.load_data() print(X.shape, YT.shape, x.shape, yt.shape) import matplotlib.pyplot as plt plt.imshow(X[0]) plt.show() print(YT[0]) CIFAR-10 데이터 셋 학습하기 import tensorflow as tf mnist=tf.keras.datasets.cifar1..

728x90
반응형